http://t.rock-chips.com

Rockchip User Guide RKNN API

V1.3.0

http://t.rock-chips.com

Table of Contents

L OVERVIEW ...ttt bttt etttk h e b e bt e s bt e bt e e bt e s bt e eh e e eb e et e e ab e e bb e eb e e sbe e beenbeaneesneas 3
2 SYSTEM DEPENDENCIES DESCRIPTIONooiiiiiiiieiiree et 3
2.1 LINUX PLATFORM DEPENDENCIESccveititiitiaristeatieseessestesre st seses e sresne st sse s snesnesne b sne s siesnssnenns 3
2.2 ANDROID PLATFORM DEPENDENCIEScuvttutststciisistetetesesesesentsssessasesessbesesese sttt ssssasesesesesesesensssssssesesesnnis 3
SAPHINSTRUGCTIONS ..ot r e r et r e e r e n e e s e s reeneeeane e n e e 3
S L RKINN APT DETAILLS ...ttt sttt r bbbt b ekt ebe £ b e et e b nr b e R bt nn s 4
00 I A T T LA T SRS 4

B L2 FKNN_ABSIIOY ...ttt b bbbk bbb st ebesb e st eb e s b et ekt nb s e ebenr et enenre e 6
BLLBTKNN_QUETY ettt bbb bbbt eb e se bt bt eb e s b st eb e e b s ekt nb e ebenr et ebenre e 6
00 I g T T o1t S 10
Bl TKININM_FUN .ttt bbbt b bt b e bbbt b b e bt e b b e bt bbbt e bt et bbb 1
T O g 01U 1o LU o < S 12
3.1.7 FKNN_OULPULS FEIBASE . .evveeeie ettt ettt et e e e ae et et e e ba e beesaeesaesneesneesaeenreereenes 13

3. L8 rKNN_fINA_JEVICES. ...ttt bbbt bt b et e et 14

3.2 RKNN DATA STRUCTURE DEFINITIONocviiiiitiiiiiiieiieiiiie sttt sttt s 14
3.2.1 rKNN_INPUE_OULPUL NMUM ..ottt bbbttt bbbt b e 14
BL2.2 TKNN_LENSOE_AELE ...ttt bbb et b e bbbttt b ettt sb ettt b et 15
72 1 (0 T2 L USSR 16
B2, FKNIN_OULPUL ..ottt bbbt b et b e bbbt bbbt bt b ettt b et b e 17
3.2.5 TKNN_PEIT _ELAIL ... bttt bbbttt nee 18
31206 TKININ_PEIT FUN ...ttt bt a e bbbt bt s bt e bt e s e e e et sbeebesbeebeene e e e nbe e 18
BL2.7 TKNN_INTE_EXEBNA ...ttt et b e et b ettt b e et b et b e bt b 18
I B (| T 0= (=T Lo USSR 19

http://t.rock-chips.com

3.2.9 TKNN_OULPUL EXEENA .. .e.viieciicieeieie ettt sttt et e s te st e steene e s e e e e stesbesteaneenaesnerenrenrens 19
BN T 1o L YZ=T 3 o] SRS 19
3210 rKNN_AEVICES Il ...ttt sttt s e et e bt ne e s et e b sbesbesbeeneeneeneeteneen 20
I I (o O Yo TS 20

3.3 RKINN AP BASIC CALL FLOW ...ttt ettt ettt bt e e e e s s st b b e e s e s s s s sbbbb e s s s asesssanres 21

4 DEMO INSTRUGCTIONS ...ttt sttt et sttt ettt et et e e s s b e e s be e st e et e sateeabesbaesbeesbassbesreesnees 27
O I IO AN =LY = YT T 27
4.1.1 ComPIlation INSEFUCLIONSc.vitiiieiiiteiieiiet ettt et bbb bbb bbb et sre e 27
A U T 1S (0 102 [T 28

A W N[0 €T = [TSRO 28
4.2.1 CoMPIlAtion INSTFUCTIONSc.viuiiiiiiiteieeiiet ettt bbb e eb e et sb et sre e 28
4.2.2 RUN INSEFUCTIONS ...vviiiiitiie ettt ettt s bt e s et e s s st e e et bbe e e s sab e e e s eabb e s s sbbaeessabaeessabbeeessbeeessrbaneaan 29

Ry NN]2 T0] [] B =Y T T 30
4.3.1 CoMPIlAtion INSEFUCLIONS ..ottt ittt sb et r et b e et sr et sbe e b sre e 30
A UL T 1S (0103 1[0 YT 31

LN d = N 15] 5 32
5.1 APl MIGRATION INSTRUCTIONS.uutttiiiieeiiiiitttieteeeeseiissraeteeessssisbssseesssssassssssessesssassrsssssessssssssresssesssssssnes 32

http://t.rock-chips.com

1 Overview

The RKNN API is an NPU(Neural Network Unit) acceleration interface based on Linux/Android. It
provides general acceleration support for Al related applications.

This manual mainly consists of three parts.

1) RKNN API: Detailed API definition and instructions for using.

2) Linux Demo: Compile the Mobilenet classifier demo and SSD object detection demo on the
Linux platform using hardware acceleration.

3) Android Demo: Compile the SSD object detection demo on the Android platform using
hardware acceleration.

2 System Dependencies Description

2.1 Linux Platform Dependencies

This Linux Arm version of APl SDK is developed based on RK3399Pro 64-bit Linux, needs to be
used on 64-bit Linux Arm system.

This Linux X86 version of APl SDK is developed based on X86 Ubunut16.04 64-bit, needs to be
used on X86 64-bit Linux system. E.g. Ubuntul6.04 64-bit X86 PC, and need make ensuring that

RK1808 is connected to the PC via USB.

2.2 Android Platform Dependencies

This Android version of APl SDK is developed based on RK3399Pro Android8.1, needs to be used

on Android8.1 system or higher.

3 API Instructions

RKNN API is a set of application programming interfaces (APIs) that based on NPU hardware
acceleration, developers can use this API to develop Al related applications, the API will call the NPU

hardware accelerator.

http://t.rock-chips.com

Currently the RKNN API on the Linux and Android platforms are the same.
On the Linux platform, The APl SDK provides two demos that use RKNN API, one is image
classifier demo based on MobileNet model, the other is object detection demo based on SSD model.

On the Android platform, The APl SDK provides one object detection demo based on SSD model.

3.1 RKNN API Details

RKNN API is a set of generic APIs designed by Rockchip for NPU hardware accelerator. This API
need to be used in conjunction with RKNN-Toolkit provided by Rockchip. The RKNN-Toolkit can
convert common model formats into RKNN models, such as TensorFlow models, Caffe models, etc.

A detailed description of the RKNN-Toolkit can be found in the <RKNN-Toolkit User Guide>.

The RKNN-Toolkit can generate a model file with the rknn suffix, such as mobilenet_v1-tf.rknn.

On the Linux platform, enter the <rknn-api>/Linux/rknn_api_sdk directory, the API definition is in
<rknn_api_sdk>/rknn_api/include/rknn_api.h, and the dynamic library path of RKNN API is
<rknn_api_sdk>/rknn_api/lib(64)/librknn_api.so. Users only need to use the header file and dynamic
library in the Al application.

On the Android platform, enter the <rknn-api>/Android/rknn_api directory, the API definition is in
<rknn_api>/include/rknn_api, the dynamic library path of RKNN API is
<rknn_api>/lib(64)/librknn_api.so. Users only need to use the header file and dynamic library in the JNI

library of the Al application. Currently, only JNI development methods are supported on Android.

The following section is a description of RKNN API.

3.1.1 rknn_init & rknn_init2

API int rknn_init(rknn_context* context, void* model, uint32_t size, uint32_t flag)

http://t.rock-chips.com

int rknn_init2(rknn_context* context, void* model, uint32_t size, uint32_t flag,

rknn_init_extend* extend)

Description

Create a context and load the rknn model.

Parameter

rknn_context* context: The pointer of context object. Used to return the created context

object.

void* model: A pointer to the rknn model.

uint32_t size: The size of the rknn model.

uint32_t flag: Extended flag:

RKNN_FLAG_PRIOR_HIGH: Create a high priority context.

RKNN_FLAG_PRIOR_MEDIUM: Create a medium priority context.

RKNN_FLAG_PRIOR_LOW: Create a low priority context.

RKNN_FLAG_ASYNC_MASK: Enable Asynchronous mode. When enable,
rknn_outputs_get will not block for too long, because it returns the inference result of the
previous frame directly (except for the inference result of the first frame), which will
significantly improve the inference frame rate in single-thread mode, but the cost is that
rknn_outputs_get return not the inference results of the current frame. When rknn_run and
rknn_outputs get are in different threads, there is no need to enable the Asynchronous
mode.

RKNN_FLAG_COLLECT _PERF_MASK: Enable performance collection debug
mode. When enable, you can query the running time of each layer of network through the
rknn_query interface. It should be noted that the total time spent in inferring one frame is
longer than RKNN_FLAG_COLLECT_PERF_MASK unset, because the execution of each

layer needs to be synchronized.

rknn_init_extend* extend: the pointer of extend information. Used to set or get

information corresponding to the current rknn_init, such as device_id (see the

http://t.rock-chips.com

rknn_init_extend definition for details). If not used, can be set to NULL.

Return

Error code (see Error Code).

The sample code is as follow:

rknn_context ctx;
int ret = rknn_init(&ctx, model_data, model_data_size, 0);

3.1.2 rknn_destroy

API int rknn_destroy(rknn_context context)

Description | Unload the rknn model and destroy the context and its associated resource.
Parameter rknn_context context: The object of context.

Return Error code (see Error Code).

The sample code is as follow:

int ret = rknn_destroy (ctx);

3.1.3 rknn_query

API int rknn_query(rknn_context context, rknn_query_cmd cmd, void™* info, uint32_t size)
Description | Query the related information of RKNN Model and SDK.
Parameter rknn_context context: The object of context.
rknn_query_cmd cmd: The command of query.
void* info: The structure variable that store the returned result.
uint32_tsize: The size of the structure variable corresponding to info.
Return Error code (see Error Code).

The supported query commands of current SDK are shown in the following table:

http://t.rock-chips.com

Command of Query

Returned Structure

Description

RKNN_QUERY_IN_OUT_NUM

rknn_input output num

Query the number of input and output

tensor.

RKNN_QUERY_INPUT ATTR

rknn_tensor_attr

Query the attribute of input tensor.

RKNN_QUERY_OUTPUT_ATTR

rknn_tensor attr

Query the attribute of output tensor.

RKNN_QUERY_PERF_DETAIL

rknn_perf_detail

Query the running time of each layer of
the network.

This query requires use the
RKNN_FLAG_COLLECT PERF_MASK
in rknn_init, otherwise no detailed layer
performance information can be obtained.
In addition, the
rknn_perf_detail.perf _data returned by
the RKNN_QUERY_PERF_DETAIL
query does not require the user to free
actively.

Pay attention that the query can only
return the correct query result after the

rknn_outputs_get function is called.

RKNN_QUERY_PERF_RUN

rknn_perf_run

Query the hardware execution time of
single inference.

Pay attention that the query can only
return the correct query result after the

rknn_outputs_get function is called.

RKNN_QUERY_SDK_VERSION

rknn sdk version

Query the SDK version.

The next section will explain in detail how each query command should be used.

http://t.rock-chips.com

3.1.3.1 Query the number of input/output tensor

The RKNN_QUERY_IN_OUT_NUM command can be used to query the number of input/output
tensor. The object of rknn_input_output_num structure needs to be created first.

The sample code is as follows:

rknn_input_output_num io_num;

ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));

printf("model input num: %d, output num: %d\n*, io_num.n_input,
i0_num.n_output);

3.1.3.2 Query the attribute of input tensor

The RKNN_QUERY_INPUT_ATTR command can be used to query the attribute of input tensor. The
object of rknn_tensor_attr structure needs to be created first.

The sample code is as follows:

rknn_tensor_attr input_attrs[io_num.n_input];
memset(input_attrs, 0, sizeof(input_attrs));
for (inti=0;i<io_num.n_input; i++) {
input_attrs[i].index = i;
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrsJ[i]),
sizeof(rknn_tensor_attr));

3.1.3.3 Query the attribute of output tensor

The RKNN_QUERY_OUTPUT_ATTR command can be used to query the attribute of output tensor.
The object of rknn_tensor_attr structure needs to be created first.

The sample code is as follows:

http://t.rock-chips.com

rknn_tensor_attr output_attrs[io_num.n_output];
memset(output_attrs, 0, sizeof(output_attrs));
for (inti=0; i <io_num.n_output; i++) {
output_attrs[i].index = i;
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT ATTR, &(output_attrs[i]),
sizeof(rknn_tensor_attr));

3.1.3.4 Query the running time of each layer of the network

If you have set RKNN_FLAG_COLLECT_PERF_MASK flag when rknn_init function is called, then
you can use RKNN_QUERY_PERF_DETAIL to query the running time of each layer of the network after
the rknn_outputs_get execution completed.

The object of rknn_perf_detail structure needs to be created first.

In addition, the rknn_perf_detail.perf_data returned by the RKNN_QUERY_PERF_DETAIL query
does not require the user to free it.

Pay attention that the query can only return the correct query result after the rknn_outputs_get
function is called.

The sample code is as follows:

rknn_perf_detail perf_detail;

ret = rknn_query(ctx, RKNN_QUERY_PERF_DETAIL, &perf_detail,
sizeof(rknn_perf_detail));

printf(“%s", perf_detail.perf_data);

3.1.3.5 Query the hardware execution time of single inference.

The RKNN_QUERY_PERF_RUN command can be used to query the hardware execution time of
single inference. The object of rknn_perf_run structure needs to be created first.

Pay attention that the query can only return the correct query result after the rknn_outputs_get
function is called.

The sample code is as follows:

http://t.rock-chips.com

rknn_perf_run perf_run;
ret = rknn_query(ctx, RKNN_QUERY_PERF_RUN, &perf_run,

sizeof(rknn_perf_run));

printf(*%Id", perf_run.run_duration);

3.1.3.6 Query the SDK version

The RKNN_QUERY_SDK_VERSION command can be used to query the SDK version. The

object of rknn_sdk_version structure needs to be created first.

The sample code is as follows:

rknn_sdk_version version;
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version,

sizeof(rknn_sdk_version));

printf(api version: %s\n", version.api_version);
printf(""driver version: %s\n", version.drv_version);

3.1.4 rknn_inputs_set

API

int rknn_inputs_set(rknn_context context, uint32_t n_inputs, rknn_input inputs[])

Description

Set the buffer pointer and other parameters of inputs.
The buffer pointer and parameters of single input need to be stored in rknn_input. This

function can support multiple inputs.

Parameter

rknn_context context: the object of context.

uint32_t n_inputs: the number of inputs.

rknn_input inputs[]: the arrays of inputs information, each element of the array is a

rknn_input structure object.

Return

Error code (see Error Code).

The sample code is as follows:

10

http://t.rock-chips.com

rknn_input inputs[1];

memset(inputs, 0, sizeof(inputs));

inputs[0].index = 0;

inputs[0].type = RKNN_TENSOR_UINTS;
inputs[0].size = img_width*img_height*img_channels;
inputs[0].pass_through = FALSE;

inputs[0].fmt = RKNN_TENSOR_NHWC,;
inputs[0].buf = in_data;

ret = rknn_inputs_set(ctx, 1, inputs);

For more detailed usage, see the step 4 of the [RKNN API Basic Call Flow] section.

3.1.5 rknn_run

API int rknn_run(rknn_context context, rknn_run_extend* extend)

Description | Perform a model inference.
The input data need to be set by rknn_inputs_set function before calling rknn_run.
The rknn_run will not block normally, but it will block when there are more than 3
inference results not obtained by rknn_outputs_get.

Parameter rknn_context context: the object of context.
rknn_run_extend* extend: the pointer of extend information. Used to set or get
information about the frame corresponding to the current rknn_run, such as frame_id (see
the rknn_run_extend definition for details). If not used, can be set to NULL.

Return Error code (see Error Code).

The sample code is as follows:

ret = rknn_run(ctx, NULL);

11

http://t.rock-chips.com

3.1.6 rknn_outputs_get

API

int rknn_outputs_get(rknn_context context, uint32_t n_outputs, rknn_output outputs[],

rknn_output_extend™* extend)

Description

Waiting for the inference operation to completed and get the output results.

This function can obtain multiple output data at one time. Each output corresponds to a
rknn_output structure object, you need to create and set each rknn_output object in turn
before the function is called. In addition, the function will block until the inference
completed (unless there is an exception error). The output results will eventually be stored
in the array of outputs[].

There are two ways to use the buffer of the output data:

1. Users malloc and free the output buffer themselves. In this mode, the is_prealloc of
the rknn_output object needs to be set to TRUE, and the rknn_output.buf also needs to be
set by user.

2. The output buffer malloc and free by rknn api. In this mode, the is_prealloc of the
rknn_output object needs to be set to FALSE, and rknn_output.buf will point to output data

after the function is called.

Parameter

rknn_context context: the object of context.

uint32_t n_outputs: the number of output arrays. This number must be the same as the
number of outputs of rknn model. (the number of outputs of rknn model can be queried by

rknn_query.)

rknn_output outputs[]: the arrays of outputs information. Each element of array is a

rknn_output structure object, representing an output of the model.

rknn_output_extend* extend: the pointer of extend information. Used to set or get
information about the frame corresponding to the current rknn_outputs get, such as

frame_id (see the rknn_output extend definition for details). If not used, can be set to

12

http://t.rock-chips.com

NULL.

Return

Error code (see Error Code).

The sample code is as follows:

rknn_output outputs[io_num.n_output];
memset(outputs, 0, sizeof(outputs));
for (inti=0; i <io_num.n_output; i++) {

}

outputs[i].want_float = TRUE;
outputs[i].is_prealloc = FALSE;

ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);

For more detailed usage, see the step 6 of the [RKNN API Basic Call Flow] section.

3.1.7 rknn_outputs_release

API int rknn_outputs_release(rknn_context context, uint32_t n_ouputs, rknn_output outputs[])
Description Release outputs that obtained by rknn_outputs_get.
When the outputs are no longer used, you need to call the function to release it.
(Whether rknn_output[x].is_prealloc is TRUE or FALSE, you need to call the function to
release the outputs.)
After the function is called:
when rknn_output[x].is_prealloc = FALSE, the rknn_output[x].buf obtained by
rknn_outputs_get is also released automatically;
when rknn_output[x].is_prealloc = TURE, the rknn_output[x].buf requires user to
freeit.
Parameter rknn_context context: the object of context.

uint32_t n_outputs: the number of output arrays. This humber must be the same as the
number of outputs of rknn model. (the number of outputs of rknn model can be queried by

rknn_query.)

13

http://t.rock-chips.com

rknn_output outputs[]: the arrays of outputs information.

Return Error code (see Error Code).

The sample code is as follows:

ret = rknn_outputs_release(ctx, io_num.n_output, outputs);

3.1.8 rknn_find_devices

API int rknn_find_devices(rknn_devices_id* pdevs)

Description | find the devices information that connected to host.

Parameter rknn_devices_id* pdevs: the pointer of devices information structure.

Return Error code (see Error Code).

The sample code is as follows:

rknn_devices_id devids;
ret = rknn_find_devices (&devids);
printf("'n_devices = %d\n", devids.n_devices);
for(int i=0; i<devids.n_devices; i++) {
printf("%d: type=%s, id=%s\n", i, devids.types[i], devids.ids][i]);
¥

3.2 RKNN Data Structure Definition

3.2.1 rknn_input_output_num

The structure rknn_input_output_num represents the number of tensors of input and output. The

following table shows the definition of the structure:

Field Data Type Meaning
n_input uint32_t The number of input tensor.
n_output uint32_t The number of output tensor.

14

http://t.rock-chips.com

3.2.2 rknn_tensor_attr

The structure rknn_tensor_attr represents the tensor attribute of rknn model, The following table

shows the definition of the structure:

Field Data Type Meaning
index uint32_t The index of input or output tensor.
The index needs to be set before calling the
rknn_query.
n_dims uint32_t The number of tensor dimensions.
dims uint32_t[] Each dimension value of tensor.
name char[] Name of tensor.
n_elems uint32_t The number of tensor elements.
size uint32_t The memory size of tensor data.
fmt rknn_tensor_format | The dimension format of tensor, as follows:
RKNN_TENSOR_NCHW
RKNN_TENSOR_NHWC
type rknn_tensor_type The data type of tensor, as follows:
RKNN_TENSOR_FLOAT32
RKNN_TENSOR_FLOAT16
RKNN_TENSOR_INT8
RKNN_TENSOR_UINT8
RKNN_TENSOR_INT16
gnt_type rknn_tensor_gnt_type | The quantization type of tensor, ds:
RKNN_TENSOR_QNT_NONE:
none quantization.
RKNN_TENSOR_QNT_DFP:

15

http://t.rock-chips.com

Dynamic fixed-point quantization.
RKNN_TENSOR_QNT_AFFINE_ASYMMETRI
C:

Asymmetric affine quantization.

fl int8_t Fractional length for RKNN_TENSOR_QNT_DFP.
zp uint32_t Zero point for
RKNN_TENSOR_QNT_AFFINE_ASYMMETRIC.
scale float Scale for

RKNN_TENSOR_QNT_AFFINE_ASYMMETRIC.

3.2.3 rknn_input

The structure rknn_input represents an input data of model, used as a parameter to the

rknn_inputs_set function. The following table shows the definition of the structure:

Field Data Type Meaning
index uint32_t The index of input tensor.
buf void* The buffer point of input data.
size uint32_t The memory size of input data buffer.
pass_through uint8_t The pass-through mode of input.

TRUE: The input data is passed directly to the
input node of rknn model without any conversion,
therefore the following type and fmt do not need to
be set.

FALSE: The input data will convert to the same

data type and format as the input node of the rknn

mode according to the following type and fmt,

16

http://t.rock-chips.com

therefore the following type and fmt need to be set.

type

rknn_tensor_type

The data type of input tensor, as follow:
RKNN_TENSOR_FLOAT32
RKNN_TENSOR_FLOAT16
RKNN_TENSOR_INT8
RKNN_TENSOR_UINTS8

RKNN_TENSOR_INT16

fmt

rknn_tensor_format

The dimension format of input tensor, as follow:
RKNN_TENSOR_NCHW

RKNN_TENSOR_NHWC

3.24

rknn_output

The structure rknn_output represents an output data of the model, used as a parameter to the

rknn_outputs_get function. The following table shows the definition of the structure:

Field Data Type Meaning
want_float uint8_t Identifies whether the output data needs to be
converted to float32 type.
is_prealloc uint8_t Identifies whether the buffer that holds the output
data is pre-allocated.
index uint32_t The index of output tensor.
buf void* The buffer pointer of output.
size uint32_t The memory size of output data buffer.

When the is prealloc is FALSE, the index/buf/size of rknn_output will be set after

rknn_outputs_get is called, therefore the three members do not need to be pre-set.

When the is_prealloc is TRUE, the index/buf/size of rknn_output need to be set before calling

rknn_outputs_get, otherwise the rknn_outputs_get function will fail with an error.

http://t.rock-chips.com

3.25 rknn_perf_detail

The structure rknn_perf_detail represents the performance details of rknn model. The following

table shows the definition of the structure:

Field Data Type Meaning
perf_data char* Contains the running time of each layer of the
network, can be printed directly for viewing.
data_len uint64_t The string length of perf_data.

3.2.6 rknn_perf_run

The structure rknn_perf_run represents the execution time of a single inference of rknn model.

The following table shows the definition of the structure:

Field

Data Type

Meaning

run_duration

int64_t

The hardware execution time (us) of a single

inference of rknn model.

3.2.7 rknn_init_extend

The structure rknn_init_extend represents the extended information of rknn_init, used as

parameter to rknn_init function.

The following table shows the definition of the structure:

Field

Data Type

Meaning

device_id

chars

Used to select the connected device. Such as
“0123456789ABCDEF”, the device id can be query

by “adb devices”. If only one device connected, can

set nullptr.

18

http://t.rock-chips.com

3.2.8 rknn_run_extend

The structure rknn_run_extend represents the extended information of rknn_run, used as
parameter to rknn_run function.

The following table shows the definition of the structure:

Field Data Type Meaning

frame_id uinté4 t Used to get the frame id after the rknn_run function
is called. The frame_ id corresponds to
rknn_output_extend.frame_id one by one, In the
case where rknn_run and rknn_outputs_get are in

different threads, it can be used to determine the

correspondence of frame.

3.2.9 rknn_output_extend

The structure rknn_output_extend represents the extend information of rknn_outputs_get, used

as parameter to rknn_outputs_get function. The following table shows the definition of the structure:

Field Data Type Meaning

frame_id uint64 _t Used to get the frame id after the rknn_outputs_get
function is called. The frame_id corresponds to
rknn_run_extend.frame_id one by one, In the case
where rknn_run and rknn_outputs_get are in
different threads, it can be used to determine the

correspondence of frame.

3.2.10 rknn_sdk_version

The structure rknn_sdk _version represents the version information of RKNN SDK. The

19

http://t.rock-chips.com

following table shows the definition of the structure:

Field Data Type Meaning
api_version char[] The version of RKNN API.
drv_version char[] The driver version on which RKNN API is based.

3.2.11 rknn_devices_id

The structure rknn_devices_id represents the information of device ID list. The following table

shows the definition of the structure:

Field Data Type Meaning
n_devices uint32_t The number of devices
types char[][] The array of device type.
ids char[][] The array of device ID.

3.2.12 Error Code

The return error code of RKNN API. The following table shows the definition:

Error Code Meaning
RKNN_SUCC Execution is successful.
RKNN_ERR_FAIL Execution is failed.
RKNN_ERR_TIMEOUT Execution timeout.

RKNN_ERR_DEVICE_UNAVAILABLE | The NPU device is unavailable.

RKNN_ERR_MALLOC_FAIL Memory allocation is failed.
RKNN_ERR_PARAM_INVALID The parameter is invalid.
RKNN_ERR_MODEL_INVALID The RKNN model is invalid.
RKNN_ERR_CTX_INVALID The rknn_context is invalid.
RKNN_ERR_INPUT_INVALID The object of rknn_input is invalid.

20

http://t.rock-chips.com

RKNN_ERR_OUTPUT_INVALID

The object of rknn_output is invalid.

RKNN_ERR_DEVICE_UNMATCH

The device version does not match.

3.3 RKNN API Basic Call Flow

1) Load the file of rknn model into memory, the file of rknn model is a model file with the rknn

suffix generated by the RKNN-Toolkit that described above, such as mobilenet_vi1-tf.rknn.

2) Call the rknn_init to initialize the context and load the rknn model, code is as follows:

rknn_context ctx = 0;

ret = rknn_init(&ctx, model, model_len, RKNN_FLAG_PRIOR_MEDIUM);

if(ret < 0) {

printf(*rknn_init fail! ret=%d\n", ret);

goto Error;

The ctx is the context object; the model is the pointer of rknn model in memory; the model_len

is size of model; the RKNN_FLAG_PRIOR_MEDIUM is the priority flag.

3) The attributes of input/output of rknn model may be different from the original model (pb or

caffe), so you need to get the new attributes of input/output through rknn_query function, as

follows:

rknn_input_output_num io_num;

ret = rknn_query(ctx, RKNN_QUERY _IN_OUT_NUM, &io_num, sizeof(io_num));

if(ret < 0) {

printf(“rknn_query fail! ret=%d\n",ret);

goto Error;

The above code used to get the number of input and output, the number will store in

io_num.n_input and io_num.n_output.

21

http://t.rock-chips.com

4)

Next get the attribute of output:

rknn_tensor_attr outputO_attr;

outputO_attr.index = 0;

ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &outputO_attr,
sizeof(outputO_attr));

if(ret < 0) {
printf(*rknn_query fail! ret=%d\n",ret);
goto Error;

}

The above code used to get the attribute of an output, remember to set the index of
rknn_tensor_attr (the index cannot be greater than or equal to the number of outputs that

obtained earlier).

Obtaining an input attribute method is similar to getting the output attribute method.

Call rknn_input_set to set the inputs according to the input parameter/format of rknn model,

code is as follows:

rknn_input inputs[1];

inputs[0].index = input_index;

inputs[0].buf = img.data;

inputs[0].size = img_width * img_height * img_channels;
inputs[0].pass_through = FALSE;

inputs[0].type = RKNN_TENSOR_UINTS;

inputs[0].fmt = RKNN_TENSOR_NHWC;

ret = rknn_inputs_set(ctx, 1, inputs);

if(ret<0) {
printf("rknn_input_set fail! ret=%d\n", ret);
goto Error;

}

First create an array of rknn_input (here assumes that there is only one input, so the array
size is set to 1), then fill each member of each array item:

inputs[0].index Index of input node.

22

http://t.rock-chips.com

inputs[0].buf Buffer pointer that can be accessed by cpu, generally pointer to image
data that generated by camera, such as RGB888 data.

inputs[0].size The size of buffer.

inputs[0].pass_through Pass-through mode:
TRUE: If the attributes (mainly type, fmt and the quantization parameter) of input
data are consistent with the input attributes obtained by the rknn_query, then the
pass_through can be set to TRUE, and the following type and fmt don’t need to be set.
In this mode, rknn_inputs_set will pass the input data directly to the input node of
rknn model. This mode is used by user to know the input attribute of the rknn model,
and has converted the original input data to the data that consistent with the rknn
model input.
FALSE: If the attributes (mainly type, fmt and the quantization parameter) of input
data are inconsistent with the input attributes obtained by the rknn_query, then the
pass_through needs to be set to FALSE, and the following type and fmt also need to
be set by user. In this mode, the rknn_inputs_set function will perform type and
format conversion and quantization processing automatically. Note that this mode
does not support dynamic fixed point (DFP) or asymmetric affine (AFFINE
ASYMMETRIC) input data passed by user.

inputs[0].type Data type of buffer, if it is RGB888 data, then set to

RKNN_TENSOR_UINTS.
inputs[0].fmt Data format of buffer, that is NHWC or NCHW, the data format that

obtained by camera is generally RKNN_TENSOR_NHWC.

Call rknn_run to trigger the inference operation after the input parameter was set. The function

will return immediately (but when there are more than 3 inference results not obtained by

rknn_outputs_get, the rknn_run will block until the rknn_outputs_get is called). Code is as

23

http://t.rock-chips.com

follows:

ret = rknn_run(ctx, NULL);

if(ret<0) {
printf("rknn_run fail! ret=%d\n", ret);
goto Error;

}

6) Now you can call rknn_outputs_get to wait for the inference to complete after rknn_run is

called, the rknn_outputs_get will block until the inference is completed, and then the inference

results can be obtained. Code is as follows:

rknn_output outputs[1];

outputs[0].want_float = TRUE;
outputs[0].is_prealloc = FALSE;

ret = rknn_outputs_get(ctx, 1, outputs, NULL);

if(ret<0) {
printf(*rknn_outputs_get fail! ret=%d\n", ret);
goto Error;

}

First create the array of rknn_output (assume there is only one output, so the size of array
set to 1). The first two members of rknn_output need to be set, namely outputs[0].want_float

and outputs[0].is_prealloc.

want_float: Since the output type of the rknn model may be inconsistent with the output
type of the original model. In general, the output type of rknn model is UINT8 or FP16 (the
output specific attribute of rknn model can be obtained by rknn_query). If the user wants to
obtain the FP32 output data, the want_float can be set to TRUE; If the user wants to get the raw

output data of rknn model, set it to FALSE.

is_prealloc = FALSE: If the user does not pre-allocate the buffer of each output, the

is_prealloc flag can be set to FALSE, and the remaining member of outputs[0] do not need to

24

http://t.rock-chips.com

be set. The inference results will be stored in output[0] after rknn_outputs_get returned, the
results contain:

outputs[0].index Index of output node.

outputs[0].buf Buffer pointer that store inference result.

outputs[0].size Size of buffer.

In addition, the other attribute of inference result of output[0] can be obtained by
rknn_query. It should be noted that the outputs[Q0].buf is automatically released when the

rknn_output_release is called, so there is no need to free it by user.

is_prealloc = TRUE: If the user has pre-allocate the buffer of each output, the is_prealloc
flag can be set to TRUE, and the remaining member of output[0] also need to be set Code is as

follows:

rknn_output outputs[1];

outputs[0].want_float = TRUE;

outputs[0].is_prealloc = TRUE;

outputs[0].index = 0;

outputs[0].buf = output0_buf;

outputs[0].size = output0_attr.n_elems * sizeof(float);
ret = rknn_outputs_get(ctx, 1, outputs, NULL);

if(ret<0) {
printf("rknn_outputs_get fail! ret=%d\n", ret);
goto Error;

}

The remaining member of output[0] is:

outputs[Q].index Index of output node. The user needs to specify the index of the
output, and the index must be smaller than the number of outputs of rknn model. (the number of
outputs of rknn model can be obtained by rknn_query.)

outputs[0].buf Buffer pointer for store inference result. The buf need to be pre-created
by user.

outputs[0].size Size of buffer. The size needs to be calculated according to the

25

http://t.rock-chips.com

corresponding output attribute and the want_float flag.
When want_float is FASLE, the size equal to the outputO_attr.size;
When want_float is FALSE, the size equal to:
outputO_attr.n_elems * sizeof(float).
(outputO_attr is attribute of output O that obtained by rknn_query.)
After the rknn_outputs_get is returned, the inference result of corresponding index will be
stored in the output[0].buf, since the buf is created by user, so the user needs to free it to avoid

memory leak when it is no longer needed.

7) When all the outputs obtained by rknn_outputs_get are no longer needed, you need to call

rknn_outputs_release to release the outputs, otherwise it will cause a memory leak. Code is as

follows:

rknn_outputs_release(ctx, 1, outputs);

The way of passing parameter is similar to rknn_outputs_get.
It should be noted that whether the rknn_output[x].is_prealloc is TRUE or FALSE, this

function needs to be called to release the output finally.

8) If you need to make multiple inferences, you can jump back to step 4 for next inference.

9) When the program needs to exit, you need to call rknn_destroy to unload model and destroy the

context, code is as follows:

rknn_destroy(ctx);

For more detailed code, please refer to the file of API SDK under the Linux directory:

<Linux>/rknn_api_sdk/rknn_mobilenet.cpp

26

http://t.rock-chips.com

<Linux>/rknn_api_sdk/rknn_ssd.cpp
or under the Android directory:

<Android>/rk_ssd_demo/app/src/main/jni/ssd_image.cc

4 Demo Instructions

4.1 Linux Arm Demo

4.1.1 Compilation Instructions

Two demos using RKNN API are provided in Linux directory of APl SDK, one is image

classifier demo based on MobileNet, the other is object detection demo based on SSD.

Enter the <Linux>/rknn_api_sdk directory, the main source file for these two demos is
<rknn_api_sdk>/rknn_mobilenet.cpp and <rknn_api_sdk>/rknn_ssd.cpp, the specific compile
method is as follows:

1) Install the arm cross-complication tool:

sudo apt install gcc-aarch64-linux-gnu
sudo apt install g++-aarch64-linux-gnu

2) cdrknn_api_sdk; mkdir build_arm; cd build_arm

3) cmake -DCMAKE_SYSTEM_NAME=Linux -DCMAKE_C_COMPILER=aarch64-linux-gnu
-gcc -DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++

4) make

You can get rknn_mobilenet and rknn_ssd executable file in <rknn_api_sdk>/build_arm/ after the

make is finished.

Note: Currently the demo is only available for the Linux Arm 64-bit system, so only 64-bit rknn api

library is provided. The demo is verified on the RK3399Pro Linux 64-bit system.

27

http://t.rock-chips.com

4.1.2 Run Instructions

For running the rknn_mobilenet and rknn_ssd, you need to copy the dependencies library to <Target

Root>/usr/lib/ or <Target Root>/usr/lib64/, and copy the relevant resource files to the <Target

Root>/tmp directory. The specific steps are as follows:

1)

2)

3)

4)

Copy the contents in the <Linux>/rknn_api_sdk/3rdparty/opencv/arm/lib64 directory and

<Linux>/rknn_api_sdk/rknn_api/arm/lib64 directory to the /usr/lib/ or /usr/lib64/ directory on
the target board.

Copy the contents in the <Linux>/tmp/ directory of the APl SDK package to the /tmp/ directory

of the target board.

Copy the rknn_mobilenet and rknn_ssd compiled in <Linux>/rknn_api_sdk/build_arm directory

to the /tmp/ directory of the target board.
Go to the /tmp directory of the target board to execute:
Jrknn_mobilenet

After the execution is successful, it will print the execution time and results.

Go to the /tmp directory of the target board to execute:

Jrknn_ssd

After the execution is successful, it will print the execution time and results. At the same time,
the image out.jpg containing the detection result will be generated in the /tmp directory of the

target board, you can export the out.jpg to view the detection result.

4.2 Linux X86 Demo

4.2.1 Compilation Instructions

Two demos using RKNN API are provided in Linux directory of APl SDK, one is image

classifier demo based on MobileNet, the other is object detection demo based on SSD.

28

http://t.rock-chips.com

Enter the <Linux>/rknn_api_sdk directory, the main source file for these two demos is
<rknn_api_sdk>/rknn_mobilenet.cpp and <rknn_api_sdk>/rknn_ssd.cpp, the specific compile
method is as follows:

1) cd rknn_api_sdk; mkdir build_x86; cd build_x86; cmake ..

2) make

You can get rknn_mobilenet and rknn_ssd executable file in <rknn_api_sdk>/build_x86/ after the

make is finished.

Note: Currently the demo is only available for the X86 Linux 64-bit system, so only 64-bit rknn api

library is provided. The demo is verified on the Ubuntu 16.04 64-bit system.

4.2.2 Run Instructions

For running the rknn_mobilenet and rknn_ssd, you need to copy the dependencies library and the
relevant resource files to the /tmp directory. The specific steps are as follows:
1) Copy the contents in the <Linux>/rknn_api_sdk/3rdparty/opencv/x86/lib64 directory and
<Linux>/rknn_api_sdk/rknn_api/x86/1ib64 directory to the /tmp/ directory on the x86 system.
2) Copy the contents in the <Linux>/tmp/ directory of the APl SDK package to the /tmp/ directory

on the x86 system.

3) Copy the rknn_mobilenet and rknn_ssd compiled in <Linux>/rknn_api_sdk/build_x86 directory
to the /tmp/ directory on the x86 system.

4) Copy the npu_transfer_proxy in <npu_transfer_proxy>//inux—x86 64 directory to the /tmp/
directory on the x86 system.

5) Make sure that the RK1808 is connected to the PC via USB, and you can see the following
device information through ‘Isusb’:

Bus 001 Device 032: ID 2207:0019

29

http://t.rock-chips.com

6) Go to the /tmp directory to execute:

sudo ./npu_transfer_proxy &

export LD LIBRARY PATH=/tmp
Jrknn_mobilenet

After the execution is successful, it will print the execution time and results.

export LD LIBRARY PATH=/tmp

Jrknn_ssd

After the execution is successful, it will print the execution time and results. At the same time,
the image out.jpg containing the detection result will be generated in the /tmp directory, you can

open the out.jpg to view the detection result.

4.3 Android Demo

4.3.1 Compilation Instructions

There are <Android>/rknn_api directory and <Android>/rk_ssd_demo directory under the Android

directory of API SDK.

rknn_api directory:
If you want to use RKNN API directly to develop your own JNI library, the JNI library can include
the <Android>/rknn_api/include/rknn_api.h and <Android>/rknn_api/lib(64)/librknn_api.so to call

RKNN API.

rk_ssd_demo directory:

30

http://t.rock-chips.com

The directory is an object detection demo based on the SSD using RKNN API. The demo contains
the java and JNI parts. The JNI directory is <Android>/rk_ssd_demo/app/src/main/jni, the rknn_api.h
header file and the librknn_api.so library file are already included in the JNI directory.

The specific compilation method of rk_ssd_demo is as follows:

1) Enter the <Android>/rk_ssd_demo directory, and open the project file by Android Studio.

2) Build and generate apk (need NDK support, verified on android-ndk-r16b).

4.3.2 Run Instructions

Run the apk directly on Android. (The demo needs an onboard camera or an external USB camera
support.)

31

http://t.rock-chips.com

5 Appendix

5.1 API Migration Instructions

Since the API changes made from v0.9.1 to v0.9.2 are relatively large, users can migrate the codes
according to the following migration steps and the above API description. The general steps are as
follows:

1) Since the definition of the context handle is changed from int type to the rknn_context type, so
the context variable and the use of rknn_init are slightly changed. The codes can be modified

from:

intret = 0;
int ctx = rknn_init(model, model_len, RKNN_FLAG_PRIOR_MEDIUM);
if(ctx < 0) {

printf("rknn_init fail! ret=%d\n", ctx);

goto Error;

if(ctx >= 0) rknn_destroy(ctx);
To:

int ret=0;
rknn_context ctx = 0;
ret = rknn_init(&ctx, model, model_len, RKNN_FLAG_PRIOR_MEDIUM);

if(ret <0) {
printf("rknn_init fail! ret=%d\n", ret);
goto Error;

}

if(ctx) rknn_destroy(ctx);

Note: Parts in red are changed.

32

http://t.rock-chips.com

2)

3)

Since the rknn_input_set function needs to support data types and formats other than INT8, so

the definition of function has also been adjusted. The codes can be modified from:

ret = rknn_input_set(ctx, input_index, img.data, img_width * img_height * img_channels,
RKNN_INPUT_ORDER_012);

if(ret<0) {
printf("rknn_input_set fail! ret=%d\n", ret);
goto Error;

}

To:

rknn_input inputs[1];

inputs[0].index = input_index;

inputs[0].buf = img.data;

inputs[0].size = img_width * img_height * img_channels;
inputs[0].pass_through = false;

inputs[0].type = RKNN_TENSOR_UINTS;

inputs[0].fmt = RKNN_TENSOR_NHWC;

ret = rknn_inputs_set(ctx, 1, inputs);

if(ret<0) {
printf("rknn_input_set fail! ret=%d\n", ret);
goto Error;

}

Note: Parts in red are changed. In addition, the parameter RKNN_INPUT_ORDER_012 does not

need to be used, and the rknn_inputs_set also has an additional s.

The rknn_outputs_get and rknn_output_to_float function are merged in v0.9.2, and added a new

way to use the memory, so the change is great. The codes can be modified from:

int h_output = -1;
struct rknn_output outputs[2];
h_output = rknn_outputs_get(ctx, 2, outputs, nullptr);
if(h_output < 0) {
printf(*rknn_outputs_get fail! ret=%d\n", ret);
goto Error;

To:

33

http://t.rock-chips.com

rknn_output outputs[2];

outputs[0].want_float = true;
outputs[0].is_prealloc = false;
outputs[1].want_float = true;
outputs[1].is_prealloc = false;

ret = rknn_outputs_get(ctx, 2, outputs, nullptr);

if(ret < 0) {
printf("rknn_outputs_get fail! ret=%d\n", ret);
goto Error;

}

Note: Parts in red are changed. The number of outputs above is 2 for example, and other models

can be modified based on actual conditions.

Since the rknn_outputs_get has merged the functions of rknn_output_to_float (that is the

want_float flag above), so the call step of rknn_output_to_float can be removed. The codes can

be modified from:

float *predictions = (float*)(outputs[0].buf);
if(outputs_attr[0].type '= RKNN_TENSOR_FLOAT32) {
predictions = (float*)malloc(output_sizel);
rknn_output_to_float(ctx, outputs[0], (void*)predictions, output_sizel);
}
float *outputClasses = (float*)(outputs[1].buf);
if(outputs_attr[1].type '= RKNN_TENSOR_FLOAT32) {
outputClasses = (float*)malloc(output_size?2);
rknn_output_to_float(ctx, outputs[1], (void*)outputClasses, output_size2);

if(outputs_attr[0].type '= RKNN_TENSOR_FLOAT32) {
free(predictions);

}
if(outputs_attr[1].type '= RKNN_TENSOR_FLOAT32) {

free(outputClasses);

¥

To:

34

http://t.rock-chips.com

5)

6)

float *predictions = (float*)(outputs[0].buf);
float *outputClasses = (float*)(outputs[1].buf);

Note: Parts in red are changed. The above is based on the post-processing of SSD, and other

models can be modified based on actual conditions.

Because the above want_float is set to True when rknn_outputs_get is called, so the value of

outputs[x].size may be inconsistent with the value of outputs_attr[x].size that queried by
rknn_query, therefore the judgement condition that judges whether output[x].size is consistent

with the attribute of query needs to be modified. The codes can be modified from:

I/ Process output
if(outputs[0].size == outputs_attr[0].size && outputs[1].size == outputs_attr[1].size)
{

¥

To:

/I Process output
if(outputs[0].size == outputs_attr[0].n_elems*sizeof(float) && outputs[1].size ==
outputs_attr[1].n_elems*sizeof(float))

{
¥

Note: Parts in red are changed. The number of outputs above is 2 for example, and other models

can be modified based on actual conditions.

The use of rknn_outputs_release has also been adjusted, the way of parameter are passed

consistent with the rknn_outputs_get (the h_output does not need to use). The codes can be

modified from:

35

