Table of Contents

1 Overview ... 1

2 Requirements/Dependencies ... 4

3 User Guide .. 5

 3.1 Installation ... 5
 3.1.1 Install by pip command .. 5
 3.1.2 Install by the Docker Image .. 6

 3.2 Usage of RKNN-Toolkit .. 7
 3.2.1 Scenario 1: Inference for Simulation on PC .. 7
 3.2.2 Scenario 2: Inference on RK3399Pro (or RK1808 or TB-RK1808S0 AI Compute Stick) connected with PC .. 10
 3.2.3 Scenario 3: Inference on RK3399Pro Linux development board .. 11

 3.3 Hybrid Quantization .. 11
 3.3.1 Instructions of hybrid quantization ... 12
 3.3.2 Hybrid quantization profile ... 12
 3.3.3 Usage flow of hybrid quantization .. 13

 3.4 Model Segmentation ... 15

 3.5 Example .. 16

 3.6 RKNN-Toolkit API description ... 19
 3.6.1 RKNN object initialization and release ... 19
 3.6.2 Loading non-RKNN model .. 20
 3.6.3 RKNN model configuration ... 23
 3.6.4 Building RKNN model ... 25
 3.6.5 Export RKNN model ... 27
 3.6.6 Loading RKNN model ... 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.7</td>
<td>Initialize the runtime environment</td>
<td>28</td>
</tr>
<tr>
<td>3.6.8</td>
<td>Inference with RKNN model</td>
<td>29</td>
</tr>
<tr>
<td>3.6.9</td>
<td>Evaluate model performance</td>
<td>32</td>
</tr>
<tr>
<td>3.6.10</td>
<td>Evaluating memory usage</td>
<td>35</td>
</tr>
<tr>
<td>3.6.11</td>
<td>Get SDK version</td>
<td>37</td>
</tr>
<tr>
<td>3.6.12</td>
<td>Hybrid Quantization</td>
<td>38</td>
</tr>
<tr>
<td>3.6.13</td>
<td>Export a segmentation model</td>
<td>40</td>
</tr>
<tr>
<td>3.6.14</td>
<td>List Devices</td>
<td>41</td>
</tr>
<tr>
<td>3.6.15</td>
<td>Register Custom OP</td>
<td>42</td>
</tr>
</tbody>
</table>
1 Overview

RKNN-Toolkit is a software development kit for users to perform model conversion, inference and performance evaluation on PC, RK3399Pro, RK1808, TB-RK1808S0 AI Compute Stick or RK3399Pro Linux development board users can easily complete the following functions through the provided python interface:

1) Model conversion: support to convert Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet model to RKNN model, support RKNN model import/export, which can be used on hardware platform later.

2) Quantization: support to convert float model to quantization model, currently support quantized methods including asymmetric quantization (asymmetric_quantized-u8) and dynamic fixed point quantization (dynamic_fixed_point-8 and dynamic_fixed_point-16). Starting with V1.0.0, RKNN-Toolkit began to support hybrid quantization. For a detailed description of hybrid quantization, please refer to Section 3.3.

3) Model inference: able to simulate running model on PC and obtain the inference results. Also able to run model on specific hardware platform RK3399Pro (or RK3399Pro Linux development board), RK1808, TB-RK1808 AI Compute Stick and obtain the inference results.

4) Performance evaluation: able to simulate running on PC and obtain the total time consumption and each layer’s time consumption of the model. Also able to run model with on-line debugging method on specific hardware platform RK3399Pro, RK1808, TB-RK1808 AI Compute Stick or directly run on RK3399Pro Linux development board to obtain the total time consumption and each layer’s time consumption when the model runs completely once on the hardware.

5) Memory evaluation: Evaluate system and NPU memory consumption at runtime of the model. It can obtain the memory usage through on-line debugging method when the model is running on specific hardware platform such as RK3399Pro, RK1808, TB-RK1808 AI Compute Stick or RK3399Pro Linux development board.
6) Model pre-compilation: with pre-compilation techniques, model loading time can be reduced, and for some models, model size can also be reduced. However, the pre-compiled RKNN model can only be run on a hardware platform with an NPU, and this feature is currently only supported by the x86_64 Ubuntu platform. RKNN-Toolkit supports the model pre-compilation feature from version V0.9.5, and the pre-compilation method has been upgraded in V1.0.0. The upgraded precompiled model is not compatible with the old driver.

7) Model segmentation: This function is used in a scenario where multiple models run simultaneously. A single model can be divided into multiple segments to be executed on the NPU, thereby adjusting the execution time of multiple models occupying the NPU, and avoiding other models because one model occupies too much execution time. RKNN-Toolkit supports this feature from version 1.2.0. This feature must be used on hardware with an NPU and the NPU driver version is greater than 0.9.8.

8) Custom OP: If the model contains an OP that is not supported by RKNN-Toolkit, it will fail during the model conversion phase. At this time, you can use the custom layer feature to define an unsupported OP so that the model can be converted and run normally. RKNN-Toolkit supports this feature from version 1.2.0. Please refer to the <Rockchip_Developer_Guide_RKNN_Toolkit_Custom_OP_CN> document for the use and development of custom OP.

Note: Some features are limited by the operating system or chip platform and cannot be used on some operating systems or platforms. The feature support list of each operating system (platform) is as follows:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Ubuntu 16.04/18.04</th>
<th>Windows 7/10</th>
<th>Debian 9.8 (ARM 64)</th>
<th>MacOS Mojave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model conversion</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Quantization</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Model inference</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Performance</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Memory evaluation</td>
<td>Model pre-compilation</td>
<td>Model segmentation</td>
<td>Custom OP</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>----------</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
2 Requirements/Dependencies

This software development kit supports running on the Ubuntu, Windows, Mac OS X or Debian operating system. It is recommended to meet the following requirements in the operating system environment:

<table>
<thead>
<tr>
<th>Operating system version</th>
<th>Ubuntu 16.04 (x64) or later</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Windows 7 (x64) or later</td>
</tr>
<tr>
<td></td>
<td>Mac OS X 10.13.5 (x64) or later</td>
</tr>
<tr>
<td></td>
<td>Debian 9.8 (x64) or later</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Python version</th>
<th>3.5/3.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python library dependencies</td>
<td>'numpy >= 1.16.1' 'scipy >= 1.1.0' 'Pillow >= 3.1.2' 'h5py >= 2.7.1' 'lmdb >= 0.92' 'networkx == 1.11' 'flatbuffers == 1.9' 'protobuf >= 3.5.2' 'onnx == 1.4.1' 'onnx-tf == 1.2.1' 'flask >= 1.0.2' 'tensorflow >= 1.11.0' 'dill==0.2.8.2' 'opencv-python>=3.4.3.18' 'ruamel.yaml==0.15.82' 'psutils>=5.6.2'</td>
</tr>
</tbody>
</table>

Note:

1. Windows and Mac OS only support Python 3.6 currently.
2. This document mainly uses Ubuntu 16.04 / Python3.5 as an example. For other operating systems, please refer to the corresponding quick start guide:

<Rockchip_Quick_Start_RKNN_Toolkit_V1.2.1_EN.pdf>
3 User Guide

3.1 Installation

There are two ways to install RKNN-Toolkit: one is via pip install command, the other is running docker image with full RKNN-Toolkit environment. The specific steps of the two installation ways are described below.

PS: The method of install RKNN-Toolkit on RK3399Pro Linux Develop Board is introduced on this link:

3.1.1 Install by pip command

1. Create virtualenv environment. If there are multiple versions of the Python environment in the system, it is recommended to use virtualenv to manage the Python environment.

   ```
   sudo apt install virtualenv
   sudo apt-get install libpython3.5-dev
   sudo apt install python3-tk
   virtualenv -p /usr/bin/python3 venv
   source venv/bin/activate
   ```

2. Install dependent libraries: TensorFlow and opencv-python

   ```
   # Install tensorflow gpu
   pip install tensorflow-gpu
   # Install tensorflow cpu. Only one version of tensorflow can be installed.
   pip install tensorflow
   # Install opencv-python
   pip install opencv-python
   ```

 Note: RKNN-Toolkit itself does not rely on opencv-python, but the example will use this library to load image, so the library is also installed here.

3. Install RKNN-Toolkit
Please select corresponding installation package (located at the `package/` directory) according to different python versions and processor architectures:

- **Python3.5 for x86_64**: `rknn_toolkit-1.2.1-cp35-cp35m-linux_x86_64.whl`
- **Python3.5 for arm_x64**: `rknn_toolkit-1.2.1-cp35-cp35m-linux_aarch64.whl`
- **Python3.6 for x86_64**: `rknn_toolkit-1.2.1-cp36-cp36m-linux_x86_64.whl`
- **Python3.6 for arm_x64**: `rknn_toolkit-1.2.1-cp36-cp36m-linux_aarch64.whl`
- **Python3.6 for Windows x86_64**: `rknn_toolkit-1.2.1-cp36-cp36m-win_amd64.whl`
- **Python3.6 for Mac OS X**: `rknn_toolkit-1.2.1-cp36-cp36m-macosx_10_9_x86_64.whl`

3.1.2 Install by the Docker Image

In docker folder, there is a Docker image that has been packaged for all development requirements, Users only need to load the image and can directly use RKNN-toolkit, detailed steps are as follows:

1. Install Docker

 Please install Docker according to the official manual:

 https://docs.docker.com/install/linux/docker-ce/ubuntu/

2. Load Docker image

 Execute the following command to load Docker image:

   ```
   docker load --input rknn-toolkit-1.2.1-docker.tar.gz
   ```

 After loading successfully, execute “docker images” command and the image of rknn-toolkit appears as follows:

<table>
<thead>
<tr>
<th>REPOSITORY</th>
<th>TAG</th>
<th>IMAGE ID</th>
<th>CREATED</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>rknn-toolkit</td>
<td>1.2.1</td>
<td>afa50891bb31</td>
<td>1 hours ago</td>
<td>2.18GB</td>
</tr>
</tbody>
</table>

3. Run image
Execute the following command to run the docker image. After running, it will enter the bash environment.

```
docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb rknn-toolkit:1.2.1 /bin/bash
```

If you want to map your own code, you can add the “-v <host src folder>::<image dst folder>” parameter, for example:

```
docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb -v /home/rk/test:/test rknn-toolkit:1.2.1 /bin/bash
```

4. Run demo

```
cd /example/mobilenet_v1
python test.py
```

3.2 Usage of RKNN-Toolkit

Depending on the type of model and device, RKNN-Toolkit can be used in the following three kinds of scenarios, the usage flow in each scenario is described in detail in the following sections.

Note: for a detailed description of all the interfaces involved in the flow, refer to Section 3.4.

3.2.1 Scenario 1: Inference for Simulation on PC

In this scenario, RKNN-Toolkit is running on PC. Users perform simulation for RK1808 with the model provided by the users to complete inference or performance evaluation.

Depending on the type of model, this scenario can be divided into two sub-scenarios: one scenario is that the model is a non-RKNN model, i.e. Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet model, and the other scenario is that the model is an RKNN model which is a proprietary model of Rockchip with the file suffix “rknn”.

Note: This scenario only supported on x86_64 Linux.
3.2.1.1 Sub-scenario 1: run the non-RKNN model

When running a non-RKNN model, the RKNN-Toolkit usage flow is shown below:

![Diagram showing the usage flow of RKNN-Toolkit when running a non-RKNN model on PC]

Figure 1 Usage flow of RKNN-Toolkit when running a non-RKNN model on PC

Note:

1. The above steps should be performed in order.

2. The model exporting step marked in the blue box is not necessary. If you exported, you can use load_rknn to load it later on.

3. The order of model inference, performance evaluation and memory evaluation steps marked in red box is not fixed, it depends on the actual demand.

4. Only when the target hardware platform is RK1808, TB-RK1808S0 AI Compute Stick, RK3399Pro
or RK3399Pro Linux, we can call eval_memory interface.

3.2.1.2 Sub-scenario 2: run the RKNN model

When running an RKNN model, users do not need to set model pre-processing parameters, nor do they need to build an RKNN model, the usage flow is shown in the following figure.

![Usage flow of RKNN-Toolkit when running an RKNN model on PC](image)

Figure 2 Usage flow of RKNN-Toolkit when running an RKNN model on PC

Note:

1. The above steps should be performed in order.
2. The order of model inference, performance evaluation and memory evaluation steps marked in red box is not fixed, it depends on the actual demand.
3. We can call eval_memory only when the target hardware platform is RK3399Pro, RK1808 or RK3399Pro Linux or TB-RK1808 AI Compute Stick.
3.2.2 Scenario 2: Inference on RK3399Pro (or RK1808 or TB-RK1808S0 AI Compute Stick) connected with PC

In this Scenario, PC is connected to the development board through USB interface, RKNN-Toolkit transfers the built or exported RKNN model to RK3399Pro (or RK1808 or TB-RK1808S0 AI Compute Stick) and performs the model inference to obtain result and performance information from RK3399Pro (or RK1808 or TB-RK1808S0 AI Compute Stick).

If the model is a non-RKNN model (Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet), the usage flow and precautions of RKNN-Toolkit are the same as the sub-scenario 1 of the scenario 1 (see Section 3.2.1.1).

If the model is an RKNN model (file suffix is “rknn”), the usage flow and precautions of RKNN-Toolkit are the same as the sub-scenario 2 of the scenario 1 (see Section 3.2.1.2).

In addition, in this scenario, we also need to complete the following two steps:

1. Make sure the USB OTG of development board is connected to PC, and call list_devices interface will show the device. More information about “list_devices” interface can see Section 3.5.13.

2. “Target” parameter and “device_id” parameter need to be specified when calling “init_runtime” interface to initialize the runtime environment, where “target” indicates the type of hardware, optional values are “rk1808” and “rk3399pro”. When multiple devices are connected to PC, “device_id” parameter needs to be specified. It is a string which can be obtained by calling “list_devices” interface, for example:

 all device(s) with adb mode:
 []
 all device(s) with ntbd mode:
 ['TB-RK1808S0', '515e9b401c060c0b']

Runtime initialization code is as follows:

```python
# RK3399Pro
ret = init_runtime(target='rk3399pro', device_id='VGEJY9PW7T')

......

# RK1808```
```python
ret = init_runtime(target='rk1808', device_id='515e9b401c060c0b')
TB-RK1808S0 AI Compute Stick
ret = init_runtime(target='rk1808', device_id='TB-RK1808S0')
```

Note: Currently, RK1808, TB-RK1808S0 AI Compute Stick support ADB or NTB. When we use multiple devices on PC or RK3399Pro Linux Development Board, all devices should use same mode, both are ADB or both are NTB.

### 3.2.3 Scenario 3: Inference on RK3399Pro Linux development board

In this scenario, RKNN-Toolkit is installed in RK3399Pro Linux system directly. The built or imported RKNN model runs directly on RK3399Pro to obtain the actual inference results or performance information of the model.

For RK3399Pro Linux development board, the usage flow of RKNN-Toolkit depends on the type of model. If the model is a non-RKNN model, the usage flow is the same as that in the sub-scenario 1 of scenario 1(see Section 3.2.1.1), otherwise, please refer to the usage flow in the sub-scenario 2 of scenario1(see Section 3.2.1.2).

### 3.3 Hybrid Quantization

RKNN-Toolkit supports hybrid quantization from version 1.0.0.

Before version 1.0.0, the quantization feature can minimize model accuracy based on improved model performance. But for some models, the accuracy has dropped a bit. In order to allow users to better balance performance and accuracy, we add new feature hybrid quantization from version 1.0.0. Users can decide which layers to quantize or not to quantize. Users can also modify the quantization parameters according to their own experience.

Note:

1. The example directory provides a hybrid quantization example named ssd_mobilenet_v2, which can be referenced to this example for hybrid quantification practice.

2. Multiple inputs model can not do hybrid quantization currently.
3.3.1 Instructions of hybrid quantization

Currently, we have three kind of ways to use hybrid quantization:

1. Convert quantized layer to non-quantized layer. This way may improve accuracy, but performance will drop.

2. Convert non-quantized layer to quantized layer. This way may improve performance, but accuracy may drop.

3. Modify quantization parameters of pointed quantized layer. This way may improve accuracy or reduce accuracy, it has no effect on performance.

PS: Only one method can be used at a time.

3.3.2 Hybrid quantization profile

When using the hybrid quantization feature, the first step is to generate a hybrid quantization profile, which is briefly described in this section.

When we call the hybrid quantization interface hybrid_quantization_step1, a yaml configuration file of `{model_name}.quantization.cfg` is generated in the current directory. The configuration file format is as follows:

```yaml

hybrid_quantization_action can be delete, add or modify, only one of these can be set at a hybrid quantization
hybrid_quantization_action: delete
'@attach_concat_1/out0_0:out0':
 dtype: asymmetric_quantized
 method: layer
 max_value:
 - 10.568130493164062
 min_value:
 - -53.3099365234375
 zero_point:
 - 213
 scale:
 - 0.25050222873687744
qtype: u8
```
First line is the version of yaml. Second line is separator. Third line is comment. Followed by the main content of the configuration file.

The first line of the body of the configuration file is the operation when using hybrid quantization. When using the hybrid quantization function, the user needs to indicate which way to use the hybrid quantization, that is, the three ways mentioned in the previous section. The corresponding actions are: "delete", "add", and "modify". The default value is "delete".

Next is a list of model layers, each layer is a dictionary. The key of each dictionary is composed of @layer_name_{layer_id}:[weight/bias/out{port}], where layer_name is the name of this layer and layer_id is an identification of this layer. We usually quantize weight/bias/out when do quantization, and use multiple out0, out1, etc. for multiple outputs. The value of the dictionary is the quantization parameter. If the layer is not be quantized, there is only “dtype” item, and the value of “dtype” is None.

### 3.3.3 Usage flow of hybrid quantization

When using the hybrid quantization function, it can be done in four steps.

Step1, load the original model and generate a quantize configuration file, a model structure file and a model weight bias file. The specific interface call process is as follows:
Step 2, Modify the quantization configuration file generated in the first step.

- If some quantization layer is changed to a non-quantization layer, find the layer that is not to be quantized, and delete the "out" item of its input node and the weight/bias item of this layer from the quantization configuration file.

- If some layers are changed from non-quantization to quantization, change the value of the hybrid_quantization_action item in the quantization configuration file to "add", then find the layer in the quantization configuration file and change its dtype from None to asymmetric_quantized or dynamic_fixed_point. Note: dtype needs to be consistent with other quantization layers.

- If the quantization parameter is to be modified, the value of the hybrid_quantization_action item in the quantization configuration file is changed to "modify", and then the quantization parameter
of the specified layer can be directly modified.

Step 3, generate hybrid quantized RKNN model. The specific interface call flow is as follows:

Start
Create RKNN object to initialize RKNN SDK environment
Call `config` interface to set preprocessing parameters of model
Call `hybrid_quantization_step2` interface to build hybrid quantized RKNN model
Call `export_rknn` interface to export RKNN model
Call `release` interface to release RKNN object
End

Figure 4 call process of hybrid quantization step 3

Step 4, use the RKNN model generated in the previous step to inference.

### 3.4 Model Segmentation

RKNN-Toolkit supports model segmentation from version 1.2.0. This feature is used in a scenario where multiple models run simultaneously. A single model can be divided into multiple segments to be executed on the NPU, thereby adjusting the execution time of multiple models occupying the NPU, avoiding that one model occupies too much execution time, while other model was not implemented in time.

The chance of each segment preempting the NPU is equal. After a segment execution is completed, it will take the initiative to give up the NPU, if the model has the next segment, it will be added to the end of the command queue again. At this time, if there are segments of other models waiting to be executed,
segmentation of other models will be performed in the order of the command queue. Note: The model that does not have model segmentation enabled is by default a segment.

The ordinary RKNN model can be divided into multiple segments by calling the export_rknn_sync_model interface. For the detailed usage of this interface, please refer to section 3.7.13.

If you are in a single model running scenario, you need to turn it off, just do not use a segmentation RKNN model. Because turning on model segmentation reduces the efficiency of single model execution, however, the multi-model running scene does not reduce the efficiency of model execution. Therefore, it is only recommended to use this feature in scenarios where multiple models are running at the same time.

3.5 Example

The following is the sample code for loading TensorFlow Lite model (see the example/mobilenet_v1 directory for details), if it is executed on PC, the RKNN model will run on the simulator.

```python
import numpy as np
import cv2
from rknn.api import RKNN

def show_outputs(outputs):
 output = outputs[0][0]
 output_sorted = sorted(output, reverse=True)
 top5_str = 'mobilenet_v1
-----TOP 5-----

for i in range(5):
 value = output_sorted[i]
 index = np.where(output == value)
 for j in range(len(index)):
 if (i + j) >= 5:
 break
 if value > 0:
 topi = '{}: {}
'.format(index[j], value)
 else:
 topi = '-1: 0.0
 top5_str += topi
print(top5_str)

def show_perfs(perfs):
 perfs = 'perfs: {}

if __name__ == '__main__':
```

# Create RKNN object
rknn = RKNN()

# pre-process config
print('--> config model')
rknn.config(channel_mean_value='103.94 116.78 123.68 58.82', reorder_channel='0 1 2')
print('done')

# Load tensorflow model
print('--> Loading model')
ret = rknn.load_tflite(model='./mobilenet_v1.tflite')
if ret != 0:
    print('Load mobilenet_v1 failed!')
    exit(ret)
print('done')

# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
if ret != 0:
    print('Build mobilenet_v1 failed!')
    exit(ret)
print('done')

# Export rknn model
print('--> Export RKNN model')
ret = rknn.export_rknn('./mobilenet_v1.rknn')
if ret != 0:
    print('Export mobilenet_v1.rknn failed!')
    exit(ret)
print('done')

# Set inputs
img = cv2.imread('./dog_224x224.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
    print('Init runtime environment failed')
    exit(ret)
print('done')

# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img])
show_outputs(outputs)
print('done')

# perf
print('--> Begin evaluate model performance')
perf_results = rknn.eval_perf(inputs=[img])
print('done')

rknn.release()

Where dataset.txt is a text file containing the path of the test image. For example, if we now have a picture of dog_224x224.jpg in the example/mobilenet_v1 directory, then the corresponding content in dataset.txt is as follows:

dog_224x224.jpg

When performing model inference, the result of this demo is as follows:

-----TOP 5-----
[156]: 0.8837890625
[155]: 0.0677490234375
[188 205]: 0.00867462158203125
[188 205]: 0.00867462158203125
[263]: 0.0057525634765625

When evaluating model performance, the result of this demo is as follows (since it is executed on PC, the result is for reference only):

<table>
<thead>
<tr>
<th>Layer ID</th>
<th>Name</th>
<th>Time(us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>tensor.transpose_3</td>
<td>72</td>
</tr>
<tr>
<td>44</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>363</td>
</tr>
<tr>
<td>59</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>201</td>
</tr>
<tr>
<td>45</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>185</td>
</tr>
<tr>
<td>60</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>243</td>
</tr>
<tr>
<td>46</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>98</td>
</tr>
<tr>
<td>61</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>149</td>
</tr>
<tr>
<td>47</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>152</td>
</tr>
<tr>
<td>62</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>120</td>
</tr>
<tr>
<td>48</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>116</td>
</tr>
<tr>
<td>63</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>101</td>
</tr>
<tr>
<td>49</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>185</td>
</tr>
<tr>
<td>64</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>101</td>
</tr>
<tr>
<td>50</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>111</td>
</tr>
</tbody>
</table>
3.6 RKNN-Toolkit API description

3.6.1 RKNN object initialization and release

The initialization/release function group consists of API interfaces to initialize and release the RKNN object as needed. The RKNN() must be called before using all the API interfaces of RKNN-Toolkit, and call the release() method to release the object when task finished.

When we init RKNN object, we can set verbose and verbose_file parameters, used to show detailed log information of model loading, building and so on. The data type of verbose parameter is bool. If we set the value of this parameter to True, the RKNN Toolkit will show detailed log information on screen. The data type of verbose_file is string. If we set the value of this parameter to a file path, the detailed log information will be written to this file (the verbose also need be set to True).

The sample code is as follows:

```python
Show the detailed log information on screen, and saved to # mobilenet_build.log
rknn = RKNN(verbose=True, verbose_file='./mobilenet_build.log')
Only show the detailed log information on screen.
rknn = RKNN(verbose=True)
...
rknn.release()
```
3.6.2 Loading non-RKNN model

RKNN-Toolkit currently supports Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet five kinds of non-RKNN models. There are different calling interfaces when loading models, the loading interface of these five models is described in detail below.

3.6.2.1 Loading Caffe model

<table>
<thead>
<tr>
<th>API</th>
<th>load_caffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Load Caffe model</td>
</tr>
<tr>
<td>Parameter</td>
<td>model: The path of Caffe model structure file (suffixed with “.prototxt”).</td>
</tr>
<tr>
<td></td>
<td>proto: Caffe model format (valid value is ‘caffe’ or ‘lstm_caffe’). We use ‘lstm_caffe’ when the model is RNN model.</td>
</tr>
<tr>
<td></td>
<td>blobs: The path of Caffe model binary data file (suffixed with “.caffemodel”).</td>
</tr>
<tr>
<td>Return</td>
<td>0: Import successfully</td>
</tr>
<tr>
<td>Value</td>
<td>-1: Import failed</td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
Load the mobilenet_v2 Caffe model in the current path
ret = rknn.load_caffe(model='./mobilenet_v2.prototxt',
 proto='caffe',
 blobs='./mobilenet_v2.caffemodel')
```

3.6.2.2 Loading TensorFlow model

<table>
<thead>
<tr>
<th>API</th>
<th>load_tensorflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Load TensorFlow model</td>
</tr>
<tr>
<td>Parameter</td>
<td>tf_pb: The path of TensorFlow model file (suffixed with “.pb”).</td>
</tr>
<tr>
<td></td>
<td>inputs: The input node of model, input with multiple nodes is supported now. All the input node string are placed in a list.</td>
</tr>
</tbody>
</table>
input_size_list: The size and number of channels of the image corresponding to the input node. As in the example of mobilenet_v1 model, the input_size_list parameter should be set to [224,224,3].

outputs: The output node of model, output with multiple nodes is supported now. All the output nodes are placed in a list.

predef_file: In order to support some controlling logic, a predefined file in npz format needs to be provided. This predefined fie can be generated by the following function call:

```
np.savez('prd.npz', [placeholder name]=prd_value). If there are / in placeholder name, use # to replace.
```

mean_values: The mean values of the input. This parameter needs to be set only if the imported model is a quantized model, and three channels of input of model have the same mean value.

std_values: The scale value of the input. This parameter needs to be set only if the imported model is a quantized model.

The sample code is as follows:

```
Load ssd_mobilenet_v1_coco_2017_11_17 TF model in the current path
ret = rknn.load_tensorflow(
 tf_pb='./ssd_mobilenet_v1_coco_2017_11_17.pb',
 inputs=['FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0
 /BatchNorm/batchnorm/mul_1'],
 outputs=['concat', 'concat_1'],
 input_size_list=[[300, 300, 3]])
```

### 3.6.2.3 Loading TensorFlow Lite model

<table>
<thead>
<tr>
<th>API</th>
<th>load_tflite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Load TensorFlow Lite model.</td>
</tr>
</tbody>
</table>
Note:
RKNN-Toolkit uses the tflite schema commits as in link:
https://github.com/tensorflow/tensorflow/commits/master/tensorflow/lite/schema/schema.fbs
commit hash:
0c4f5dfe4cecb0b46fc04828420a3447f7598
Because the tflite schema may not compatible with each other, tflite models in older or newer schema may not be imported successfully.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>model: The path of TensorFlow Lite model file (suffixed with “.tflite”).</td>
<td>-1: Import failed</td>
</tr>
<tr>
<td>0: Import successfully</td>
<td></td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
Load the mobilenet_v1 TF-Lite model in the current path
ret = rknn.load_tflite(model = './mobilenet_v1.tflite')
```

### 3.6.2.4 Loading ONNX model

<table>
<thead>
<tr>
<th>API</th>
<th>load_onnx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Load ONNX model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>model: The path of ONNX model file (suffixed with “.onnx”)</td>
<td>-1: Import failed</td>
</tr>
<tr>
<td>0: Import successfully</td>
<td></td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
Load the arcface onnx model in the current path
ret = rknn.load_onnx(model = './arcface.onnx')
```
3.6.2.5 Loading Darknet model

<table>
<thead>
<tr>
<th>API</th>
<th>load_darknet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Load Darknet model</td>
</tr>
<tr>
<td>Parameter</td>
<td>model: The path of Darknet model structure file (suffixed with &quot;.cfg&quot;). weight: The path of weight file (suffixed with &quot;.weight&quot;).</td>
</tr>
<tr>
<td>Return</td>
<td>0: Import successfully</td>
</tr>
<tr>
<td>Value</td>
<td>-1: Import failed</td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
Load the yolov3-tiny darknet model in the current path
ret = rknn.load_darknet(model = './yolov3-tiny.cfg',
weight= './yolov3.weights')
```

3.6.3 RKNN model configuration

Before the RKNN model is built, the model needs to be configured first through the config interface.

<table>
<thead>
<tr>
<th>API</th>
<th>config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Set model parameters</td>
</tr>
<tr>
<td>Parameter</td>
<td>batch_size: The size of each batch of data sets. The default value is 100. When quantifying, the amount of data fed in each batch will be determined according to this parameter to correct the quantization results. channel_mean_value: It is a list contains four value (M0, M1, M2, S0), where the first three value are all mean parameters, the latter value is a scale parameter. If the input data is three-channel data with (Cin0, Cin1, Cin2), after preprocessing, the shape of output data is (Cout0, Count1, Count2), calculated as follows:</td>
</tr>
<tr>
<td></td>
<td>Cout0 = (Cin0 - M0)/S0</td>
</tr>
<tr>
<td></td>
<td>Cout1 = (Cin1 - M1)/S0</td>
</tr>
<tr>
<td></td>
<td>Cout2 = (Cin2 - M2)/S0</td>
</tr>
<tr>
<td>Note: for three-channel input only, other channel formats can be ignored.</td>
<td></td>
</tr>
</tbody>
</table>
For example, if input data needs to be normalized to [-1,1], this parameter should be set to (128 128 128 128). If input data needs to be normalized to [-1,1], this parameter should be set to (0 0 0 255). If there are multiple inputs, the corresponding parameters for each input is split with ‘#’, such as ‘128 128 128#128 128 128 128’.

epochs: Number of iterations in quantization. Quantization parameter calibration is performed with specified data at each iteration. Default value is -1, in this situation, the number of iteration is automatically calculated based on the amount of data in the dataset.

reorder_channel: A permutation of the dimensions of input image (for three-channel input only, other channel formats can be ignored). The new tensor dimension i will correspond to the original input dimension reorder_channel[i]. For example, if the original image is RGB format, ‘2 1 0’ indicates that it will be converted to BGR.

If there are multiple inputs, the corresponding parameters for each input is split with ‘#’, such as ‘0 1 2#0 1 2’.

*Note:* each value of reorder_channel must not be set to the same value.

need_horizontal_merge: Indicates whether to merge horizontal, the default value is False.

If the model is inception v1/v3/v4, it is recommended to enable this option, it can improve the performance of inference.

quantized_dtype: Quantization type, the quantization types currently supported are asymmetric_quantized-u8,dynamic_fixed_point-8,dynamic_fixed_point-16. The default value is asymmetric_quantized-u8.

| Return Value | None |

The sample code is as follows:

```python
model config
rknn.config(channel_mean_value='103.94 116.78 123.68 58.82',
 reorder_channel='0 1 2',
 need_horizontal_merge=True)
```
3.6.4 Building RKNN model

<table>
<thead>
<tr>
<th>API</th>
<th>build</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Build corresponding RKNN model according to imported model (Caffe, TensorFlow, TensorFlow Lite, etc.).</td>
</tr>
<tr>
<td>Parameter</td>
<td>do_quantization: Whether to quantize the model, optional values are True and False.</td>
</tr>
<tr>
<td></td>
<td>dataset: A input data set for rectifying quantization parameters. Currently supports text file format, the user can place the path of picture( jpg or png ) or npy file which is used for rectification. A file path for each line. Such as:</td>
</tr>
<tr>
<td></td>
<td>a.jpg</td>
</tr>
<tr>
<td></td>
<td>b.jpg</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>a.npy</td>
</tr>
<tr>
<td></td>
<td>b.npy</td>
</tr>
<tr>
<td></td>
<td>If there are multiple inputs, the corresponding files are divided by space. Such as:</td>
</tr>
<tr>
<td></td>
<td>a.jpg a2.jpg</td>
</tr>
<tr>
<td></td>
<td>b.jpg b2.jpg</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>a.npy a2.npy</td>
</tr>
<tr>
<td></td>
<td>b.npy b2.npy</td>
</tr>
<tr>
<td></td>
<td>pre_compile: If this option is set to True, it may reduce the size of the model file, increase the speed of the first startup of the model on the device. However, if this option is enabled, the built model can be only run on the hardware platform, and the inference or performance evaluation cannot be performed on simulator. If the hardware is updated, the corresponding model need to be rebuilt.</td>
</tr>
</tbody>
</table>
### Note:

1. We cannot use pre-compile on RK3399Pro Linux development board or Windows PC or Mac OS X PC.

2. Pre-compiled model generated by RKNN-Toolkit-v1.0.0 or later cannot run on device installed old driver (NPU driver version < 0.9.6), and pre-compiled model generated by old RKNN-Toolkit (version < 1.0.0) cannot run on device installed new NPU driver (NPU driver version >= 0.9.6). We can call get_sdk_version interface to fetch driver version.

3. If there are multiple inputs, this option needs to be set to False.

### rknn_batch_size:

- batch size of input, default is 1. If greater than 1, NPU can infer and multiple frames of input image or input data in one inference. For example, original input of MobileNet is [1, 224, 224, 3], output shape is [1, 1001]. When rknn_batch_size is set to 4, the input shape of MobileNet becomes [4, 224, 224, 3], output shape becomes [4, 1001].

### Note:

1. The adjustment of rknn_batch_size does not improve the performance of the general model on the NPU, but it will significantly increase memory consumption and increase the delay of single frame.

2. The adjustment of rknn_batch_size can reduce the consumption of the ultra-small model on the CPU and improve the average frame rate of the ultra-small model. (Applicable to the model is too small, CPU overhead is greater than the NPU overhead)

3. The value of rknn_batch_size is recommended to be less than 32, to avoid the memory usage is too large and the reasoning fails.

4. After the rknn_batch_size is modified, the shape of input and output will be modified. So the inputs of inference should be set to correct size. We also need to process the returned outputs on post processing.
The sample code is as follows:

```python
Build and quantize RKNN model
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
```

### 3.6.5 Export RKNN model

In order to make the RKNN model reusable, an interface to produce a persistent model is provided. After building RKNN model, `export_rknn()` is used to save an RKNN model to a file. If you have an RKNN model now, it is not necessary to call `export_rknn()` interface again.

<table>
<thead>
<tr>
<th>API</th>
<th>export_rknn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Save RKNN model in the specified file (suffixed with “.rknn”).</td>
</tr>
<tr>
<td>Parameter</td>
<td>export_path: The path of generated RKNN model file.</td>
</tr>
<tr>
<td>Return</td>
<td>0: Export successfully</td>
</tr>
<tr>
<td>Value</td>
<td>-1: Export failed</td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
save the built RKNN model as a mobilenet_v1.rknn file in the current path
ret = rknn.export_rknn(export_path = './mobilenet_v1.rknn')
```

### 3.6.6 Loading RKNN model

<table>
<thead>
<tr>
<th>API</th>
<th>load_rknn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Load RKNN model</td>
</tr>
<tr>
<td>Parameter</td>
<td>path: The path of RKNN model file. load_model_in_npu: Whether to load RKNN model in NPU directly. The path parameter</td>
</tr>
</tbody>
</table>
should fill in the path of the model in NPU. It can be set to True only when RKNN-Toolkit run on RK3399Pro Linux or NPU device(RK3399Pro, RK1808 or TB-RK1808 AI Compute Stick) is connected. Default value is False.

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Load successfully</td>
<td></td>
</tr>
<tr>
<td>-1: Load failed</td>
<td></td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
Load the mobilenet_v1 RKNN model in the current path
ret = rknn.load_rknn(path='./mobilenet_v1.rknn')
```

### 3.6.7 Initialize the runtime environment

Before inference or performance evaluation, the runtime environment must be initialized. This interface determines which type of runtime hardware is specified to run model.

<table>
<thead>
<tr>
<th>API</th>
<th>init_runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Initialize the runtime environment. Set the device information (hardware platform, device ID). Determine whether to enable debug mode to obtain more detailed performance information for performance evaluation.</td>
</tr>
<tr>
<td>Parameter</td>
<td>target: Target hardware platform, now supports “rk3399pro”, “rk1808”. The default value is “None”, which indicates model runs on default hardware platform and system. Specifically, if RKNN-Toolkit is used in PC, the default device is simulator, and if RKNN-Toolkit is used in RK3399Pro Linux development board, the default device is RK3399Pro. The “rk1808” includes TB-RK1808 AI Compute Stick. device_id: Device identity number, if multiple devices are connected to PC, this parameter needs to be specified which can be obtained by calling “list_devices” interface. The default value is “None”. Note: Mac OS X platform does not supple multiple devices. perf_debug: Debug mode option for performance evaluation. In debug mode, the running</td>
</tr>
</tbody>
</table>
time of each layer can be obtained, otherwise, only the total running time of model can be given. The default value is False.

eval_mem: Whether enter memory evaluation mode. If set True, we can call eval_memory interface later to fetch memory usage of model running. The default value is False.

async_mode: Whether to use asynchronous mode. When calling the inference interface, it involves setting the input picture, model running, and fetching the inference result. If the asynchronous mode is enabled, setting the input of the current frame will be performed simultaneously with the inference of the previous frame, so in addition to the first frame, each subsequent frame can hide the setting input time, thereby improving performance. In asynchronous mode, the inference result returned each time is the previous frame. The default value for this parameter is False.

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Initialize the runtime environment successfully</td>
</tr>
<tr>
<td>-1</td>
<td>Initialize the runtime environment failed</td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
Initialize the runtime environment
ret = rknn.init_runtime(target='rk1808', device_id='012345789AB')
if ret != 0:
 print('Init runtime environment failed')
 exit(ret)
```

### 3.6.8 Inference with RKNN model

This interface kicks off the RKNN model inference and get the result of inference.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the model to perform inference with specified input and get the inference result. Detailed scenarios are as follows: 1. If RKNN-Toolkit is running on PC and the target is set to &quot;rk3399pro&quot; or &quot;rk1808&quot; when initializing the runtime environment, the inference of model is performed on the specified</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>inputs</td>
</tr>
<tr>
<td>data_type</td>
</tr>
<tr>
<td>data_format</td>
</tr>
<tr>
<td>outputs</td>
</tr>
<tr>
<td>inputs_pass_through</td>
</tr>
</tbody>
</table>

**Return Value**

results: The result of inference, the object type is ndarray list.

**Note:** Versions prior to 1.0.0 will convert output shape from "NHWC" to "NCHW".

Starting from version 1.1.0, the shape of the output will be consistent with the original model, and no longer convert from "NHWC" to "NCHW". Please pay attention to the location of the channel when performing post processing.

The sample code is as follows:

For classification model, such as mobilenet_v1, the code is as follows (refer to example/mobilenet_v1
for the complete code):

```python
Perform inference for a picture with a model and get a top-5 result
......
outputs = rknn.inference(inputs=[img])
show_outputs(outputs)
......
```

The result of top-5 is as follows:

```plaintext
-----TOP 5-----
[156]: 0.8837890625
[155]: 0.0677490234375
[188 205]: 0.00867462158203125
[188 205]: 0.00867462158203125
[263]: 0.0057525634765625
```

For object detection model, such as mobilenet-ssd, the code is as follows (refer to example/mobilenet-ssd for the complete code):

```python
Perform inference for a picture with a model and get the result of object detection
......
outputs = rknn.inference(inputs=[image])
......
```

After the inference result is post-processed, the final output is shown in the following picture (the color of the object border is randomly generated, so the border color obtained will be different each time):
3.6.9 Evaluate model performance

<table>
<thead>
<tr>
<th>API</th>
<th>eval_perf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Evaluate model performance.</td>
</tr>
<tr>
<td></td>
<td>Detailed scenarios are as follows:</td>
</tr>
<tr>
<td></td>
<td>1. If running on PC and not setting the target when initializing the runtime environment, the performance information is obtained from simulator, which contains the running time of each layer and the total running time of model.</td>
</tr>
<tr>
<td></td>
<td>2. If running on RK3399Pro or RK1808 or TB-RK1808 AI Compute Stick which connected to PC and setting perf_debug to False when initializing runtime environment, the performance information is obtained from RK3399Pro or RK1808, which only contains the total running time of model. And if the perf_debug is set to True, the running time of each</td>
</tr>
</tbody>
</table>

Figure 3 mobilenet-ssd inference result
layer will also be captured in detail.

3. If running on RK3399Pro Linux development board and setting perf_debug to False when initializing runtime environment, the performance information is obtained from RK3399Pro, which only contains the total running time of model. And if the perf_debug is set to True, the running time of each layer will also be captured in detail.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inputs</td>
<td>Input data, such as images processed by cv2. The object type is ndarray list.</td>
</tr>
<tr>
<td>data_type</td>
<td>The numerical type of input data. Optional values are ‘float32’, ‘float16’, ‘int8’, ‘uint8’, ‘uint16’. The default value is ‘uint8’.</td>
</tr>
<tr>
<td>data_format</td>
<td>The shape format of input data. Optional values are “nchw”, “nhwc”. The default value is ‘nhwc’.</td>
</tr>
<tr>
<td>is_print</td>
<td>Whether to print performance evaluation results in the canonical format. The default value is True.</td>
</tr>
</tbody>
</table>

### Return Value

| perf_result     | Performance information. The object type is dictionary. |

If running on device (RK3399Pro or RK1808) and set perf_debug to False when initializing the runtime environment, the dictionary gives only one field ‘total_time’, example is as follows:

```python
{
 'total_time': 1000
}
```

In other scenarios, the obtained dictionary has one more field called ‘layers’ which is also a dictionary type. The ‘layers’ takes the ID of each layer as the key, and its value is one dictionary which contains 'name' (name of layer), 'operation' (operator, which is only available when running on the hardware platform), 'time'(time-consuming of this layer).

Example is as follows:

```python
{
 'total_time', 4568,
 'layers', {
 '0': {
 'name': 'convolution.relu.pooling.layer2_2',
 'operation': 'CONVOLUTION',
 'time', 362
 }
 }
}
```
The sample code is as follows:

```python
Evaluate model performance
......
rknn.eval_perf(inputs=[image], is_print=True)
......
```

For mobilenet-ssd in example directory, the performance evaluation results are printed as follows (The following is the result obtained on the PC simulator. The details obtained when connecting the hardware device are slightly different from the result.):

<table>
<thead>
<tr>
<th>Layer ID</th>
<th>Name</th>
<th>Time(us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>tensor.transpose_3</td>
<td>125</td>
</tr>
<tr>
<td>71</td>
<td>convolution.relu.pooling.layer2_3</td>
<td>325</td>
</tr>
<tr>
<td>105</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>331</td>
</tr>
<tr>
<td>72</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>437</td>
</tr>
<tr>
<td>106</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>436</td>
</tr>
<tr>
<td>73</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>223</td>
</tr>
<tr>
<td>107</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>374</td>
</tr>
<tr>
<td>74</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>327</td>
</tr>
<tr>
<td>108</td>
<td>convolution.relu.pooling.layer2_3</td>
<td>533</td>
</tr>
<tr>
<td>75</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>201</td>
</tr>
<tr>
<td>109</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>250</td>
</tr>
<tr>
<td>76</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>320</td>
</tr>
<tr>
<td>110</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>250</td>
</tr>
<tr>
<td>77</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>165</td>
</tr>
<tr>
<td>111</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>257</td>
</tr>
<tr>
<td>78</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>319</td>
</tr>
<tr>
<td>112</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>257</td>
</tr>
<tr>
<td>79</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>319</td>
</tr>
<tr>
<td>113</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>257</td>
</tr>
<tr>
<td>80</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>319</td>
</tr>
<tr>
<td>114</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>257</td>
</tr>
<tr>
<td>81</td>
<td>convolution.relu.pooling.layer2_2</td>
<td>319</td>
</tr>
</tbody>
</table>
3.6.10 Evaluating memory usage

<table>
<thead>
<tr>
<th>API</th>
<th>eval_memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Fetch memory usage when model is running on hardware platform.</td>
</tr>
<tr>
<td></td>
<td>Model must run on RK3399Pro, RK1808, TB-RK1808 AI Compute Stick or RK3399Pro Linux.</td>
</tr>
<tr>
<td><strong>Parameter</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td><code>is_print</code></td>
<td>Whether to print performance evaluation results in the canonical format. The default value is True.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Return Value</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>memory_detail</code></td>
<td>Detail information of memory usage. Data format is dictionary.</td>
</tr>
</tbody>
</table>

Data shows as below:

```python
{
 'system_memory', {
 'maximum_allocation': 128000000,
 'total_allocation': 152000000
 },
 'npu_memory', {
 'maximum_allocation': 30000000,
 'total_allocation': 40000000
 },
 'total_memory', {
 'maximum_allocation': 158000000,
 'total_allocation': 192000000
 }
}
```

- The ‘`system_memory`’ means memory usage of system.
- The ‘`npu_memory`’ means memory usage inside the NPU.
- The ‘`total_memory`’ means the sum of system and npu’s memory usage.
- The ‘`maximum_allocation`’ field means the maximum memory usage (unit: Byte) from start the model to dump the information. It is the peak memory usage.
- The ‘`total_allocation`’ means the accumulation memory usage (unit: Byte) of allocate memory from start the model to dump the information.

The sample code is as follows:

```python
eval memory usage
......
memory_detail = rknn.eval_memory()
......
```

For mobilenet_v1 in example directory, the memory usage when model running on RK1808 is printed as follows:
3.6.11 Get SDK version

<table>
<thead>
<tr>
<th>API</th>
<th>get_sdk_version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Get API version and driver version of referenced SDK. Note: Before we use this interface, we must load model and initialize runtime first. And this API can only used on RK3399Pro、RK1808 or TB-RK1808 AI Compute Stick.</td>
</tr>
<tr>
<td>Parameter</td>
<td>None</td>
</tr>
<tr>
<td>Return</td>
<td>sdk_version: API and driver version. Data type is string.</td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
Get SDK version
......
sdk_version = rknn.get_sdk_version()
......
```

The SDK version looks like below:

```
==
RKNN VERSION:
API: 1.2.0 (1190a71 build: 2019-09-25 12:39:14)
```

---

**Memory Profile Info Dump**

System memory:
- maximum allocation : 41.53 MiB
- total allocation   : 43.86 MiB

NPU memory:
- maximum allocation : 34.53 MiB
- total allocation   : 34.54 MiB

Total memory:
- maximum allocation : 76.06 MiB
- total allocation   : 78.40 MiB

INFO: When evaluating memory usage, we need consider the size of model, current model size is: 4.10 MiB
3.6.12 Hybrid Quantization

3.6.12.1 hybrid_quantization_step1

When using the hybrid quantization function, the main interface called in the first phase is hybrid_quantization_step1, which is used to generate the model structure file (\{model_name\}.json), the weight file (\{model_name\}.data), and the quantization configuration file (\{model_name\}.quantization.Cfg). Interface details are as follows:

<table>
<thead>
<tr>
<th>API</th>
<th>hybrid_quantization_step1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Corresponding model structure files, weight files, and quantization profiles are generated according to the loaded original model.</td>
</tr>
<tr>
<td>Parameter</td>
<td>dataset: A input data set for rectifying quantization parameters. Currently supports text file format, the user can place the path of picture( jpg or png ) or npy file which is used for rectification. A file path for each line. Such as: a.jpg b.jpg or a.npy b.npy</td>
</tr>
<tr>
<td>Return Value</td>
<td>0: success -1: failure</td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
Call hybrid_quantization_step1 to generate quantization config
...
ret = rknn.hybrid_quantization_step1(dataset='./dataset.txt')
```
3.6.12.2 hybrid_quantization_step2

When using the hybrid quantization function, the primary interface for generating a hybrid quantized RKNN model phase call is hybrid_quantization_step2. The interface details are as follows:

<table>
<thead>
<tr>
<th>API</th>
<th>hybrid_quantization_step2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The model structure file, the weight file, the quantization profile, and the correction data set are received as inputs, and the hybrid quantized RKNN model is generated.</td>
</tr>
<tr>
<td>Parameter</td>
<td></td>
</tr>
<tr>
<td>model_input</td>
<td>model_input: The model structure file generated in the first step, which is shaped like &quot;{model_name}.json&quot;. The data type is a string. Required parameter.</td>
</tr>
<tr>
<td>data_input</td>
<td>data_input: The model weight file generated in the first step, which is shaped like &quot;{model_name}.data&quot;. The data type is a string. Required parameter.</td>
</tr>
<tr>
<td>model_quantization_cfg</td>
<td>model_quantization_cfg: The modified model quantization profile, which is shaped like &quot;{model_name}.quantization.cfg&quot;. The data type is a string. Required parameter.</td>
</tr>
<tr>
<td>dataset</td>
<td>dataset: A input data set for rectifying quantization parameters. Currently supports text file format, the user can place the path of picture( jpg or png ) or npy file which is used for rectification. A file path for each line. Such as: a.jpg b.jpg or a.npy b.npy</td>
</tr>
<tr>
<td>pre_compile</td>
<td>pre_compile: If this option is set to True, it may reduce the size of the model file, increase the speed of the first startup of the model on the device. However, if this option is enabled, the built model can be only run on the hardware platform, and the inference or performance evaluation cannot be performed on simulator. If the hardware is updated, the</td>
</tr>
</tbody>
</table>
corresponding model need to be rebuilt.

Note:

1. we can not use pre compile on RK3399Pro Linux development board or Windows PC or Mac OS X PC.

2. Pre-compiled model generated by RKNN-Toolkit-v1.0.0 or later can not run on device installed old driver (NPU driver version < 0.9.6), and pre-compiled model generated by old RKNN-Toolkit (version < 1.0.0) can not run on device installed new NPU driver (NPU driver version >= 0.9.6). We can call get_sdk_version interface to fetch driver version.

3. If there are multiple inputs, this option needs to be set to False.

Return Value

<table>
<thead>
<tr>
<th>Return</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>success</td>
</tr>
<tr>
<td>-1</td>
<td>failure</td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
Call hybrid_quantization_step2 to generate hybrid quantized RKNN model
......
ret = rknn.hybrid_quantization_step2(
 model_input='./ssd_mobilenet_v2.json',
 data_input='./ssd_mobilenet_v2.data',
 model_quantization_cfg='./ssd_mobilenet_v2.quantization.cfg',
 dataset='./dataset.txt')
......
```

3.6.13 Export a segmentation model

The function of this interface is to convert the ordinary RKNN model into a segment model, and the position of the segment is specified by the user.

<table>
<thead>
<tr>
<th>API</th>
<th>export_rknn_sync_model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Insert a sync layer after the user-specified layer to segment the model and export the segmented model.</td>
</tr>
<tr>
<td>Parameter</td>
<td>input_model: the model which need segment. Data type is string, required.</td>
</tr>
</tbody>
</table>
sync_uids: uids of the layer which need insert sync layer. RKNN-Toolkit will insert a sync layer.

Note:
1. Uid can be obtained through the eval_perf interface, and perf_debug should be set to True when call init_runtime interface. When we want to obtain uids, we need connect a RK3399Pro or RK1808 or TB-RK1808 AI Compute Stick, we can also obtain uids on RK3399Pro Linux develop board.
2. The value of sync_uids cannot be filled in at will. It must be obtained by eval_perf interface, Otherwise unpredictable consequences may occur.

output_model:

<table>
<thead>
<tr>
<th>Return</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>success</td>
</tr>
<tr>
<td>-1</td>
<td>failure</td>
</tr>
</tbody>
</table>

The sample code is as follows:

```python
from rknn.api import RKNN

if __name__ == '__main__':
 rknn = RKNN()
 ret = rknn.export_rknn_sync_model(
 input_model='./ssd_inception_v2.rknn',
 sync_uids=[206, 186, 152, 101, 96, 67, 18, 17],
 output_model='./ssd_inception_v2_sync.rknn')
 if ret != 0:
 print('export sync model failed."
 exit(ret)
 rknn.release()
```

### 3.6.14 List Devices

<table>
<thead>
<tr>
<th>API</th>
<th>list_devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>List connected RK3399PRO/RK1808/TB-RK1808S0 AI Compute Stick.</td>
</tr>
</tbody>
</table>
### Parameter
None

### Return Value
Return adb_devices list and ntb_devices list. If there are no devices connected to PC, it will return two empty list.

For example, there are two TB-RK1808 AI Compute Sticks connected to PC, it's return looks like below:

```python
adb_devices = []
ntb_devices = ['TB-RK1808S0', '515e9b401c060c0b']
```

The sample code is as follows:

```python
from rknn.api import RKNN

if __name__ == '__main__':
 rknn = RKNN()
 rknn.list_devices()
 rknn.release()
```

The devices list looks like below:

```

all device(s) with adb mode:
['515e9b401c060c0b', 'XGOR2N4EZR']
*************************```

3.6.15 Register Custom OP

<table>
<thead>
<tr>
<th>API</th>
<th>register_op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Register custom op</td>
</tr>
<tr>
<td>Parameter</td>
<td>op_path: rknnop file path of custom op build output</td>
</tr>
<tr>
<td>Return Value</td>
<td>Void</td>
</tr>
</tbody>
</table>

The sample code is as follows. Note that this interface need be called before model converted. Please refer to the "Rockchip_Developer_Guide_RKNN_Toolkit_Custom_OP_CN" document for the use and development of custom operators.
rknn.register_op('./resize_area/ResizeArea.rknnop')
rknn.load_tensorflow(...)